

GAUSS (NORMAL) DISTRIBUTION						
$z_{lower} = \frac{\mu - \sigma - \mu}{\sigma} = -1$		$z_{upper} = \frac{\mu + \sigma - \mu}{\sigma} = 1$				
	Width of the interval	$\pm\sigma$	$\pm 2\sigma$	$\pm 3\sigma$		
	Р	0.68268	0.9545	0.9973		
Interpretation of the results						
The variance of a measurement system is $0.09(mg/l)^2$. The measured concentration of t same sample vary in a $\pm 2^{*}0.3mg \pm 0.6mg/l$ range with ~96% proba					on of the '0.3mg/l= probability.	
The maximum bite force of a spotted hyena is 4500N, the sigma is 45N. The maximum bite force of a spotted hyena is between 4365 4635N with ~99.7% probability.					ce of a en 4365- ability. 8	

CENTRAL LIMIT THEOREM

The mean of sample elements taken from any distribution approximately follows Gauss distribution around the expected value of the original distribution with variance σ^2/n . Where *n* is the sample size.

Sum as well

Based on the Central Limit Theorem: $z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$

 $\sum_{i=1}^{N} x_i \sim N(n\mu, n\sigma^2)$

23

Question:Known:
$$p(\bar{x}_{lower} < \bar{x} < \bar{x}_{upper}) = 0.95$$
 $p(-1.96 < z < 1.96) = 0.95$ $P(-1.96 < z < 1.96) = 0.95$ $P(-1.96 < z < 1.96) = 0.95$ $P(-1.96 < \overline{x} - \mu)$ $P(-1.96 = 0.95)$ $P(-1.96 < \overline{x} < 1.04) = 0.95$ $P(109.56 < \overline{x} < 1.044) = 0.95$

INTERPRETING THE RESULTS					
Example 1 The expected weight is σ^2 = with 95% pro	d weight of a chocolate bar is 110 g, the variance of the =0.25g ² . In which range will be the weight of a chocolate bability?				
	$P(109.02 < x \le 110.98) = 0.95$				
Example 4 The expecte weight is σ^2 chocolate ba	d weight of a chocolate bar is 110 g, the variance of the =0.25g ² . In which range will be the average weight of 5 r with 95% probability?				
	$P(109.56 < \overline{x} \le 110.44) = 0.95$				
In general:	$P\left(\mu - z_{\alpha/2}\sigma/\sqrt{n} < \overline{x} \le \mu + z_{\alpha/2}\sigma/\sqrt{n}\right) = 1 - \alpha$				